Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.
نویسندگان
چکیده
Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link.
منابع مشابه
Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملبه کارگیری مدلهای رگرسیون لجستیک ترتیبی در مطالعات کیفیت زندگی
Background & Objectives: Due to the increasing tendency to measure the quality of life in recent years and the extensive quality of life questionnaires, it is important to determine the appropriate method of analyzing data derived from these studies. The aim of the present study was to introduce ordinal logistic regression models as an appropriate method for analyzing the data of quality of li...
متن کاملStatistical Methods to Enhance Clinical Prediction with High-Dimensional Data and Ordinal Response
Advancing technology has enabled us to study the molecular configuration of single cells or whole tissue samples. Molecular biology produces vast amounts of high-dimensional omics data at continually decreasing costs, so that molecular screens are increasingly often used in clinical applications. Personalized diagnosis or prediction of clinical treatment outcome based on high-throughput omics d...
متن کاملBayesian Approaches to Ordinal Exposures with a Mixture of Berkson and Classical Measurement Error
Background: Exposures are occasionally only available in an aggregated form, such as an average physical exposure for each job title. When quantifying the relationship between an individual level outcome and a group level exposure, the variance estimates are contaminated with Berkson measurement error. If the aggregated exposures come from a separate sample, such as a job exposure matrix, the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- G3
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2015